Simulation of magnetic cloud erosion during propagation
نویسندگان
چکیده
We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with its high speed, the ICME evolves in ways that give it a unique appearance at 1 AU that does not resemble a typical ICME. First, as the ICME decelerates far from the Sun in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport poloidal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely unbalanced configuration. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence that such remarkable behavior has actually occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material. Consistent with the simulation, we find the poloidal flux (Bz) to be entirely unbalanced, giving the appearance that the flux rope has eroded. The dense solar filament material and unbalanced positive IMF Bz produced a number of anomalous features in a moderate magnetic storm already underway, which are described in a companion paper by Kozyra et al. (2014).
منابع مشابه
An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملPii: S0920-3796(02)00008-x
Surface and structural damage to plasma-facing components due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy during major disruptions, edge-localized modes (ELMs), and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface da...
متن کاملIntegrated Models for Plasma/Material Interaction during Loss of Plasma Confinement
A comprehensive computer package, High Energy Interaction with General Heterogeneous ‘&i.rget&ystems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the e...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملAn Analytical Model for Flame Propagation through Moist Lycopodium Particles with Non-unity Lewis Number
In this investigation, the structure of one-dimensional flame propagation in uniform cloud of volatile organic particles has been analyzed in which the structure of flame is divided into three zones. The first zone is preheat zone which is divided into three subzones itself. In first subzone (heating), particle cloud heated until the moisty particles reach to vapor vaporization temperature. In ...
متن کامل